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ECMD: An Event-Centric Multisensory Driving
Dataset for SLAM

Peiyu Chen1∗, Weipeng Guan1∗, Feng Huang2∗, Yihan Zhong2, Weisong Wen2, Li-Ta Hsu2, Peng Lu1†

Abstract—Leveraging multiple sensors enhances complex
environmental perception and increases resilience to varying lu-
minance conditions and high-speed motion patterns, achieving
precise localization and mapping. This paper proposes, ECMD,
an event-centric multisensory dataset containing 81 sequences
and covering over 200 km of various challenging driving
scenarios including high-speed motion, repetitive scenarios,
dynamic objects, etc. ECMD provides data from two sets
of stereo event cameras with different resolutions (640×480,
346×260), stereo industrial cameras, an infrared camera, a
top-installed mechanical LiDAR with two slanted LiDARs,
two consumer-level GNSS receivers, and an onboard IMU.
Meanwhile, the ground-truth of the vehicle was obtained
using a centimeter-level high-accuracy GNSS-RTK/INS navi-
gation system. All sensors are well-calibrated and temporally
synchronized at the hardware level, with recording data si-
multaneously. We additionally evaluate several state-of-the-art
SLAM algorithms for benchmarking visual and LiDAR SLAM
and identifying their limitations. The dataset is available at
https://arclab-hku.github.io/ecmd/.

Index Terms—Event-based Vision, Multi-sensor Fusion,
SLAM, Autonomous Driving, Dataset.

I. INTRODUCTION

V ISUAL and LiDAR simultaneous localization and map-
ping (SLAM) achieved notable progress within driving

scenarios in recent years. However, they encounter the
challenging task of operating robustly under heterogeneous
environments, such as varying lighting conditions, low-
texture scenarios, repetitive structures, diverse motion pat-
terns, dense dynamic objects, etc. Utilizing novel sensors and
integrating multiple sensors can provide a comprehensive
perception and enhance the robustness of the entire system
[1]–[3]. These motivate us to develop a dataset that integrates
novel sensors under realistic and complex driving scenarios,
thereby promoting SLAM research.
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Fig. 1. An overview of the sensor setup and dataset visual-
ization. Above: The sensor suite is mounted on the top of the
vehicle. Below: Sensor systems include two sets of stereo
event cameras, stereo industrial cameras, an infrared camera,
a top-installed LiDAR with two slanted LiDAR, IMU, and
GNSS-RTK/INS systems. Each sensor is indicated with the
letter box.

Event cameras have low latency (µs-level) and high
dynamic range (140 dB compared to 60 dB with standard
cameras) properties, which offers great opportunities for
visual (VO) and visual-inertial odometry (VIO) in rough
terrain, aggressive motions, and high dynamic range (HDR)
[4]. Unlike traditional frame-based cameras that directly cap-
ture fixed-rate intensity frames, event cameras are motion-
activated sensors that capture pixel-wise intensity differ-
ences asynchronously in continuous streams. However, the
widespread commercialization and implementation of event
cameras in robotics are still early due to the expensive cost.
In addition, event cameras confront challenges during rapid
vibrations and ego-motion, as these conditions generate a
substantial quantity of events, leading to intensive compu-
tations. Conversely, in cases where minimal relative motion
between the event camera and the scene exists, such as under
static states, they only provide limited information or even
introduce noise [5]. Therefore, we embark on this research
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effort to explore the inquiry: Are event cameras ready for
autonomous driving?

There exist several stereo event-based driving datasets
that are worth mentioning and exploring. MVSEC [6] was
the first stereo event-based driving dataset proposed for
evaluating the localization performance. While MVSEC
employs the low resolution of DAVIS346 which limits
the feature detection for accurate localization. DSEC [7]
offers stereo event streams with a high resolution of 0.31
Megapixels(MP). However, this dataset focuses on com-
puter vision tasks segmentation, depth estimation, optical
flow estimation, etc., which is not specifically designed for
VO/VIO/SLAM domains. MA-VIED [8] propose a large-
scale driving dataset under standard urban scenarios and
race track-like loops. The ground-truth trajectory relies on
GNSS-RTK, which only ensures high accuracy in open-sky
environments and fails to provide high accuracy in GNSS-
denied scenarios such as tunnels or densely street areas. Ref.
[9] focuses on collecting both stereo event data and stereo
intensity images under indoor and urban driving scenes with
the ground-truth of GNSS-RTK/INS. Their sequences do not
encompass extremely high-speed or repetitive scenarios that
could be challenging to VO/VIO/SLAM algorithms.

To address the above drawbacks, we propose ECMD, a
dataset procured from diverse challenging driving scenarios
with a comprehensive suite of sensors for benchmarking
various VO/VIO/SLAM algorithms. To the best of our
knowledge, this is the first event-based SLAM dataset specif-
ically focused on densely urbanized driving scenarios. The
contributions of our work can be summarized as follows:

1) Our sensor platform consists of various novel sensors
shown in Fig.1, including two sets of stereo event
cameras with distinct resolutions (640×480, 346×260),
an infrared camera, stereo industrial cameras, three
mechanical LiDARs (including two slanted LiDARs), a
high-quality inertial measurement unit (IMU), and three
global navigation satellite system (GNSS) receivers. For
the ground-truth, we adopt a centimeter-level position
system that combines the GNSS real-time kinematic
(RTK) with the fiber optics gyroscope integrated inertial
system as GNSS-RTK/INS.

2) ECMD collects 81 sequences covering over 200 kilo-
meters of trajectories in various driving scenarios, in-
cluding dense streets, urban, tunnels, highways, bridges,
and suburbs. These sequences are recorded under day-
light and nighttime, providing challenging situations for
Visual and LiDAR SLAM, e.g., dynamic objects, high-
speed motion, repetitive scenarios, and HDR scenes.
Meanwhile, we evaluate existing state-of-the-art visual
and LiDAR SLAM algorithms with various sensor
modalities on our datasets. Moreover, our dataset and
benchmark results are released publicly available on our
website.

The remainder of the paper is organized as follows:
Section II introduces the related works. Section III presents
the sensor setup and sensor calibration. Section IV intro-

duces the dataset overview. Section V demonstrates the
dataset application. Section VI introduces known issues. The
conclusion is given in Section VII.

II. RELATED WORKS

Currently, several event-based datasets combined with
various sensors have been released for VO/VIO/SLAM do-
mains, utilizing handheld devices or a variety of robotics
platforms. DAVIS240C [10], TUM-VIE [11], VECtor [12],
and HKU-dataset1 were collected by handheld / head-
mounted devices under indoor environments. M2DGR [13]
utilizes ground robots to collect a multi-sensor dataset
with an event camera under large-scale scenes, while the
event streams exhibit large noises. FusionPortable [14] pro-
poses multi-sensor campus-scene datasets with stereo event
cameras on diverse platforms (handheld, quadruped robot,
and UGV). Moreover, there exist specialized event-based
datasets such as UZH-FPV [15] and GRIFFIN [16], which
are targeted for flying robots.

Moreover, a number of event-based datasets are published
under large-scale driving scenarios for computer vision.
These autopilot datasets offer more realistic and challeng-
ing conditions, including high-speed scenarios, repetitive
situations, and HDR scenes compared to datasets collected
from handheld devices. The first dataset catering to driving
recordings using an event camera is DDD17 [17], as well as
the follow-up DDD20 [18], for studying the end-to-end driv-
ing application incorporating diverse vehicle control data.
HATS [19], CED [20], Ref. [21], and Ref. [22] published
their event-based datasets for the computer vision task of
object classification, image reconstruction, and vision place
recognition in driving scenarios. MVSEC [6] is a pioneering
cross-modal dataset with stereo event and image cameras,
as well as LiDAR. However, a limitation of MVSEC re-
sides in the utilization of low-resolution event cameras
(346×260) with a compact baseline of 10 cm, coupled with
the imprecision of the ground-truth derived from GNSS or
LiDAR-SLAM. DSEC [7] proposed an event-based dataset
whose scenarios are similar to KITTI [23], providing higher
resolution stereo event (640×480) and image, LiDAR, and
IMU under various illumination conditions. M3ED [24]
encompasses high-resolution event cameras (1280×720) and
covers three different robotics platforms: driving, flight, and
legged robot. However, both DSEC and M3ED datasets are
primarily utilized for computer vision fields, such as op-
tical flow estimation, segmentation, and disparity estimation,
rather than specifically for localization or mapping problems.
Besides, they do not provide sufficient challenges for SLAM,
as the majority of these datasets were collected in rural
or suburban areas with relatively low-lying structures, light
traffic, and less dynamic objects. ViViD++ [25] focuses on
diverse vision sensors for handheld and driving platforms,
including event, thermal, and standard cameras. MA-VIED
[8] proposes a comprehensive driving dataset that encom-
passes race track-like loops, maneuvers, and standard driving

1https://github.com/arclab-hku/Event based VO-VIO-SLAM

https://github.com/arclab-hku/Event_based_VO-VIO-SLAM
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TABLE I. Comparison with other event-based datasets in driving scenarios, regarding terrain and sensor types. ECMD
provides the most extensive sensor configuration and urban scenarios.

Dataset Terrain
Event Infrared Image

LiDAR GNSS IMU GT Pose
Resolution [MP]

DDD17 [17] Urban 0.09 × 1 ✗ 0.09 × 1 ✗ ✓ ✗ ✗

N-CARS [19] Urban 0.07 × 1 ✗ 0.07 × 1 ✗ ✗ ✗ ✗

MVSEC [6] Suburban 0.09 × 2 ✗ 0.36 × 2 VLP-16 ✓ ✓ GNSS/LiDAR-SLAM
CED [20] Urban 0.09 × 1 ✗ 0.09 × 1 ✗ ✗ ✗ ✗

Ref. [21] Urban 0.31 × 1 ✗ ✗ ✗ ✗ ✗ ✗

DDD20 [18] Urban 0.09 × 1 ✗ 0.09 × 1 ✗ ✓ ✗ ✗

Brisbane-Event-VPR [22] Suburban 0.31 × 1 ✗ 0.31 × 1 ✗ ✗ ✗ ✗

Ref. [27] Suburban, Urban 0.31 × 1 ✗ 0.31 × 1 ✗ ✗ ✗ ✗

DSEC [7] Suburban 0.31 × 2 ✗ 1.56 × 2 VLP-16 ✓ ✓ GNSS-RTK
ViViD++ [25] Urban 0.31 × 1 0.33 × 1 2.46 × 1 OS1-64 ✓ ✓ GNSS-RTK

M3ED [24] Forest, Urban 0.92 × 2 ✗ 1.02 × 3 OS1-64 ✗ ✓ LiDAR-SLAM/GNSS-RTK

MA-VIED [8] Urban,
Race track-like loops 0.31 × 1 ✗ 2.30 × 1 ✗ ✓ ✓ GNSS-RTK

Ref. [9] Urban, Indoor 0.31 × 2 ✗ 3.14 × 2 OS1-128 ✓ ✓ GNSS-RTK/INS

ECMD Suburban, Urban,
Dense City

0.09 × 2
0.31 × 2 0.33 × 1 2.30 × 2

VLP-16
Lslidar C16
HDL-32E

✓ ✓ GNSS-RTK/INS

scenarios. However, both of these datasets exclusively offer
monocular data for each camera type, thereby precluding
the possibility of conducting stereo visual SLAM. Ref. [9]
introduces a stereo visual localization dataset that exploits
both the high-resolution event and standard cameras under
indoor and urban scenarios.

Table I. summarizes the differences between our ECMD
and other event-based datasets under autonomous driving
scenarios. Compared to other datasets, our ECMD offers
several advantages: (i) Capture diverse visual data format
(RGB image, event stream, and infrared image) from multi-
ple types of vision sensors in varying luminance conditions
and urbanized scenarios; (ii) 1kHz-rate event streams from
different resolution event cameras empower in-depth explo-
ration of event-based perception; (iii) Based on our previous
work [26], three LiDARs, including two slanted LiDARs,
are employed to collect high-rising building structures for
LiDAR point cloud maps generation; (iv) We employ a
centimeter-level localization system, GNSS-RTK/INS, as
ground-truth, enabling a comprehensive evaluation of var-
ious SLAM algorithms.

III. SYSTEM OVERVIEW

A. Sensors Setup

The data collection platform is shown in Fig.1. Our
sensor suite consists of a multi-camera setup (event cam-
era, industrial camera, and infrared camera) equipped with
three LiDARs, high-quality IMU, three GNSS receivers, and
GNSS-RTK/INS systems. The specific specifications of each
sensor are presented in Table II. An Intel NUC (i7-1260P,
32GB RAM) and an industrial computer (i7-10610U, 32GB
RAM) are used to run sensor drivers, and record data into
ROS bags on the Ubuntu system.

1) Visual Sensors: Two sets of stereo event cameras with
different resolutions, DAVIS436 (346×260) and DVXplorer

(640×480), are configured at a baseline of 30 cm respec-
tively. DAVIS346 produces asynchronous events and inten-
sity frames. In contrast, DVXplorer exclusively generates
events, while its resolution surpasses that of DAVIS346,
enabling the provision of more intricate scene information.
Each event camera is equipped with additional infrared filters
to mitigate interference from LiDAR. Two FLIR BFLY-U3-
23S3C industrial cameras with a resolution of 1920×1200
are used to capture RGB images at 20 Hz in fixed exposure
mode. Forward-facing stereo industrial cameras are installed
with a baseline of 30 cm, ensuring fairness by maintaining
consistency with the baseline of the stereo event cameras.
Hikrobot MV-CI003-GL-N6 infrared camera collects ther-
mal frames at 20 Hz, encompassing a response band of 8-
14µm and equipped with a 6.3mm focal length lens.

2) Mechanical LiDAR: We configure three mechanical
LiDARs including two slanted LiDARs to collect accurate
point clouds of surrounding environments. Velodyne HDL-
32E is positioned on the top of the vehicle to capture
the surroundings horizontally. Two slanted LiDARs, Lslidar
C16 and Velodyne VLP-16, are mounted on the left and
right sides of the sensor kit, respectively. This configuration
facilitates the thorough recording of architectural particulars
relevant to high-rising buildings in urbanized areas and all
LiDAR data are collected at 10 Hz.

3) GNSS-RTK/INS Sensor: A tactical-level Xsens-MTI-
30 IMU is employed to collect the raw acceleration and
angular velocity at 400 Hz. The accurate ground-truth of lo-
calization is furnished by a centimeter-level GNSS-RTK/INS
navigation system, further details can be found in Section
IV-B1.

B. Time Synchronization

We use a Precision Time Protocol (PTP) [29] device to
synchronize the clocks of various data collection devices
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TABLE II. Sensors specifications

Sensors Specifications

Event Camera

Inivation DAVIS346 Color (×2), 1000 Hz
346×260 pixel
IMU: MPU6150, 6-axis
baseline: 30 cm
Inivation DVXplorer (×2), 1000 Hz
640×480 pixel
IMU: MPU6150, 6-axis
baseline: 30 cm

Infrared Camera
Hikrobot MV-CI003-GL-N6, 20 Hz
640×512 pixel
H-FOV: 88.5◦, V-FOV: 73.2◦

Industrial Camera

FLIR BFLY-U3-23S3C(× 2), 20 Hz
1920×1200 pixel
H-FOV: 96.8◦, V-FOV: 79.4◦

baseline: 30 cm

LiDAR

Velodyne HDL-32E, 10Hz
H-FOV: 360◦, V-FOV: +10.67◦∼-30.67◦

32 channel
100m range
Velodyne VLP-16, 10Hz
H-FOV: 360◦, V-FOV: +15◦∼-15◦

16 channel
100m range
Lslidar C16, 10Hz
H-FOV: 360◦, V-FOV: +14◦∼-16◦

16 channel
150m range

IMU
Xsens Mti-30, 400Hz
Accelerometer in-run Bias Instability 15 µg
Gyroscope in-run Bias Instability 18◦/h

GNSS Receiver
U-Blox ZED-F9P, 1Hz
EVK-M8T, 1Hz

GNSS-RTK/INS
NovAtel SPAN-CPT [28], 1Hz
Localization RMSE 5cm

across the sensor network. The PTP ensures time accuracy
within nanoseconds. The synchronization device acquires the
NMEA [30] output and pulse-per-second (PPS) signal from
a u-blox M8T GNSS receiver to align the ROS time of the
onboard computers with the GPS time. This enables sensors
such as cameras, LiDAR, and IMU to record timestamps
based on the synchronized GPS time. Moreover, to achieve
time synchronization between different event cameras, the
DAVIS346 on the rightmost side is configured as the master
device and transmits trigger signal pulses to the remaining
slave event cameras sequentially from left to right via
external cables.

C. Sensors Calibration
1) IMU Calibration: To calibrate the IMU, we position

it on a level surface for a duration of three hours and record
the raw measurements. Utilizing the Kalibr toolbox, we can
accurately calibrate the random walk and Gaussian white
noise of the IMU.

2) Industrial Cameras Calibration: For industrial cam-
eras, we move the sensor platform against the 9×7 checker-
board in the XYZ-axis and collect the sequence of RGB
images and IMU. Then intrinsics calibration of industrial
cameras is achieved by Kalibr toolbox [31], where the
pinhole and radial-tangential camera models are adopted.

3) Event Cameras Calibration: For event cameras,
DAVIS346 can produce fixed-rated frames, enabling image-
based calibration, while DVXplorer merely produces asyn-
chronous event streams. Therefore, E2Calib [32] [33] is used
to achieve image reconstruction from event streams. With the
reconstructed checkerboard images in Fig. 2(b), the intrinsics
of event cameras could also be calibrated by Kalibr.

(a) (b)

Fig. 2. The calibration of event cameras using checkerboard.
(a) Raw event streams. (b) Reconstructed images from
events.

4) Infrared Camera Calibration: Due to infrared cameras
solely capturing the temperature rather than the intensity
difference, we design a distinct 9×7 checkerboard to make
the pattern detectable for infrared cameras. As shown in
Fig.3(a), the checkerboard intervals are affixed with alu-
minum materials, and then using a heating plate to raise the
temperature of the checkerboard. Since the superior thermal
dissipation of aluminum compared to plastic, a temperature
contrast emerges between the two materials, enabling in-
frared cameras to distinctly capture the lattice shape of the
checkerboard, as in Fig.3(b). With the special infrared image
of the checkerboard, intrinsic can be calibrated by Kalibr.

(a) (b)

Fig. 3. The calibration of the infrared camera using checker-
board. (a) PCB checkerboard. (b) Infrared image.

5) Calibration between Camera and IMU: After com-
pleting intrinsics calibration, we move the sensor suite in
front of checkerboards along the XYZ-RPY-axis and collect
data simultaneously. Subsequently, the extrinsics and the
temporal offset between all cameras and IMU could be
estimated using Kalibr.
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6) Calibration between LiDAR and IMU: For the cal-
ibration of mechanical LiDAR, LI-Init [34] is capable of
achieving temporal and spatial calibration for LiDAR and
IMU without checkerboards or extra devices in Fig.4. We
rotate and move the device around the XYZ-axis to ensure
sufficient excitation until the data accumulation is com-
pleted, thus we acquire the extrinsic transformation between
LiDAR and IMU.

Fig. 4. Calibration between LiDAR and IMU.

IV. DATASET OVERVIEW

Our dataset encompasses a wide range of driving scenes,
including urban streets, urban roads, tunnels, highways,
bridges, and suburban roads. We have specifically focused on
scenarios where visual SLAM algorithms encounter difficul-
ties. These scenarios involve high-speed motion (up to 110
km/h), limited texture, as well as difficult glare conditions
in both daytime and nighttime driving. We also targeted
situations where LiDAR SLAM encounters limitations, such
as long corridors or areas with sparse geometric structures.
The complete dataset is partitioned into 81 sequences to
facilitate researchers in evaluating their algorithms. Each
sequence has an approximate duration of 120 seconds.
Additionally, we have retained a few sequences with long
duration, lasting approximately 34 minutes, specifically for
the evaluation of loop closure in large-scale environments
and loop closure scenarios. The summary of sequence types
can be found in Table III.

TABLE III. The summary of different sequence types
under contrasting lighting conditions

Terrain Time Duration [min] #Sequences

Dense Street Day, Night 91 19
Urban Road Day, Night 35.5 19

Tunnel - - - 6.5 9
Highway Day, Night 34.3 15
Bridge Day, Night 10.5 6

Suburban Road Day, Night 23.5 13

Total Day, Night 201.3 81

A. Scenarios

1) Dense Urban Street: This scenario focuses on low-
speed vehicles, around 30km/h, proceeding on highly ur-
banized areas and urban canyons in Hong Kong with
multiple light conditions. The streets are narrow at 10m

in width and buildings on both sides of the scene are
dense. Meanwhile, the presence of congested traffic and
dynamic crowds may produce the degradation of visual or
LiDAR localization, such as Dense street day easy b. To
evaluate the loop closure performance of SLAM, we remark-
ably recorded sequences Dense street difficult circle and
Dense street difficult loop where our vehicle was circling
in repeated routes.

2) Urban Road: This type of scenario records the ve-
hicle traveling at an approximate speed of 60km/h on an
expressway in Hong Kong with multiple weather condi-
tions. Compared to the Dense Urban Street scenario, Ur-
ban Road sequences travel through Hong Kong city at a
higher speed, while the buildings are not as tightly packed
on either side and the road is more spacious with four lanes.
Despite the absence of pedestrians on the road, the scene still
includes vehicles overtaking, paralleling, and other situations
where the relative motion is not consistent with the absolute
motion. The aforementioned discrepancy might pose a chal-
lenge for the VIO or LIO system. Moreover, the sequence
comprises the vehicle traveling during nighttime in rainy
conditions. We record trajectories in rainy situations under
nighttime like Urban road night difficult rainy a which
are commonly faced in practical driving scenarios, whereas
they are not present in previous datasets.

3) Tunnel: Tunnel scenarios commence with a high-speed
vehicle on an open-sky highway, entering an enclosed tunnel
without satellite reception. Inside the tunnel, GNSS posi-
tioning is unreliable since the satellite signal is completely
blocked. Meanwhile, the scenario represents a typical and
challenging scene for VIO and LIO systems due to the
repetitive and texture-less environments for vision sensors
and LiDAR. The sequence collections end after the vehicle
exits the tunnel and continues to proceed on the highway for
twenty seconds.

4) Highway: The scenario involves vehicles traveling at
speeds up to 100km/h on low-texture highways both during
the day and night, with sparse buildings alongside the road.
High speeds, rapid changes in vehicle speed, repetitive visual
scenes, and low-texture environments present significant
challenges for autonomous driving. Meanwhile, the vibration
of the vehicle body at high-speed motion amplifies the
random walk and Gaussian white noise of IMU, thereby
diminishing its reliability.

5) Bridge: The motion pattern of vehicles in bridge
scenarios resembles that of highways, with vehicles traveling
in a straight line at high speed along the bridge. However,
this scene differs as there are no buildings on either side of
the bridge, only the sea surrounds it. Bridges present scenes
with limited texture, and the feature information within these
scenes tends to be monotonous and repetitive, which further
exacerbates the challenge of achieving accurate localization.

6) Suburban Road: Suburban road scenarios present
complex natural environments characterized by winding and
rugged roads, steep slopes, and narrow lanes. The vehicle
navigates the serpentine mountain roads at a moderate speed
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Fig. 5. The visualization of various scenarios including event streams, RGB images, and infrared images.

(approximately 50km/h), with significant altitude changes.
The abundant texture information in the mountain road scene
facilitates visual algorithms to extract stable features and
construct effective constraints.

B. Ground-truth Generation

1) Ground-truth Poses: We obtained the ground-truth
positioning from the NovAtel SPAN-CPT [28], a high-
performance GNSS RTK/INS integrated navigation sys-
tem. The ground-truth of most existing event-based driv-
ing datasets are derived from LiDAR-SLAM [6] [24],
GPS/GNSS [6], GNSS-RTK [7] [25] [24]. The ground-truth
derived from LiDAR-SLAM relies on the estimation of ve-
hicle trajectories using LiDAR SLAM which only provides
relative trajectories. It is difficult to quantify the accuracy of
ground-truth pose, and errors may even exceed ten meters in
some cases. The complex environment or the equipment mal-
functions may disrupt the satellite reception of GPS/GNSS,
thus relying solely on GPS/GNSS for ground-truth pose
may lead to significant drift. The GNSS-RTK device can
only provide centimeter-level accuracy in the open sky [26]
In contrast, our SPAN-CPT can provide continuous high
accuracy aided by the internal fiber-optic gyroscopes under
high-rise buildings, tunnels, and other environments with

weak satellite signals. Furthermore, we post-process the
ground-truth positioning from SPAN-CPT using the state-of-
the-art NovAtel Inertial Explorer [28] software to maximize
the accuracy of the trajectory. For the GNSS positioning
benchmark, we provide the WGS84 coordinate data for
comparison. For the evaluation of SLAM algorithms, we
provide the tools2 to transform the ground-truth data from
the WGS84 coordinates to the local frame/ENU frame based
on the original points.

2) LiDAR Point Cloud Maps Generation: Utilizing the
ground-truth pose for each frame in conjunction with their
corresponding LiDAR point clouds, we accumulate these
point clouds to construct a highly accurate LiDAR point
cloud map to depict the TsingMa Bridge in Fig.6. The map
encompasses rich spatial information, providing a detailed
3D reconstruction of the bridge and its surrounding areas.

V. DATASET APPLICATIONS

A. Visual SLAM Evaluations

As shown in Table IV., we evaluate the performance of
VINS-MONO [35], ORB-SLAM3 [36], and ESVIO [37]

2https://github.com/IPNL-POLYU/UrbanNavDataset/tree/master/tools/
gt vis

https://github.com/IPNL-POLYU/UrbanNavDataset/tree/master/tools/gt_vis
https://github.com/IPNL-POLYU/UrbanNavDataset/tree/master/tools/gt_vis
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Fig. 6. The vehicle poses ground-truth on Google map with the LiDAR point cloud maps of Tsing Ma bridge.

across various scenes and lighting conditions on our dataset.
The accuracy is quantified using mean position error (MPE,
%), which aligns the estimated trajectory with ground-truth
through 6-DOF transformation (in SE3) computed by the
tool [38]. For the VINS-Mono, we evaluate it separately
using RGB images and infrared images. Due to the resolu-
tion provided by industrial cameras being higher in contrast
to the infrared camera, we achieve superior performance
when utilizing RGB images. The ORB-SLAM3 often fails
to robustly track features during high-speed vehicle move-
ments, potentially resulting in the tracking thread restarts.
The ESVIO leverages the complementary advantages of
event streams and RGB images, allowing it to handle the
lack of texture in RGB images under broad illumination
conditions to achieve higher accuracy. Fig.7 compares event,
RGB images, and infrared images under different lighting
conditions. The RGB images offer rich texture under regular
luminance scenes in contrast to events and infrared images
offer comparatively limited information, e.g., the infrared
image struggles to accurately discern traffic left-turn symbol
on the ground. Conversely, the RGB image may lose numer-
ous environmental features under the conditions of low light
or over-exposure. The infrared camera can capture infrared
radiation beyond the visible spectrum and event cameras
can detect pixel-level intensity changes at low latency. Both
the event camera and the infrared camera are more resilient
in external varying lighting conditions, providing effective
visibility compared to the industrial camera, e.g., in night-
time scenes, event cameras can capture road signs, and the
infrared camera can clearly capture the surrounding bushes.

TABLE IV. The MPE(%) of different visual localization
algorithms on ECMD datasets

Sequence
VINS-Mono [35]

Mono VIO
2.30[MP] image

VINS-Mono [35]
Infrared VIO

0.33[MP] infrared

ORB-SLAM3 [36]
Stereo VO

2.30[MP] image

ESVIO [37]
Stereo EVIO

2.30[MP] image
0.31[MP] event

Dense street night easy a 0.34 2.82 10.01 0.48
Urban road day easy b 14.26 7.78 failed 9.63

Highway day easy a 1.48 2.65 failed 1.04
Suburban road day easy b 2.36 3.48 9.04 1.35

Regular

Dark

Over-exposure

Fig. 7. Comparison of event streams, RGB images, and
infrared images under different lighting conditions.

B. LiDAR SLAM Evaluations

Table V. demonstrates the performance of LIO-SAM
[39], LVI-SAM [40], Fast-LIO2 [41], Point-LIO [42] across
various scenes on our dataset. We use the same criteria intro-
duced in Section V-A to evaluate the localization accuracy.

TABLE V. The MPE(%) of different LiDAR localization
algorithms on ECMD datasets

Sequence LIO-SAM [39]
LIO

LVI-SAM [40]
LVIO

Fast-LIO2 [41]
LIO

Point-LIO [42]
LIO

Dense street day easy a 0.25 0.25 0.23 0.25
Urban road day medium 0.67 failed 6.23 6.34

Tunnel easy a 1.00 failed 1.36 20.84
Highway day medium b 0.51 failed 0.63 failed

Bridge day difficult a 0.78 failed 1.33 15.52
Suburban road night medium b 0.61 failed 1.73 0.72

Due to the tilt-mounted LiDAR setups (see Fig.1), we
are able to acquire point clouds of towering buildings
situated on both sides of the street. This installation approach
compensated for the lack of vertical point clouds compared
to the horizontally mounted LiDAR. In Fig.8, red point
clouds are generated from a horizontally mounted LiDAR
while white and green point clouds are generated from tilt-
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mounted LiDARs. We evaluate the performance of LOAM
[43] using three different LiDARs (center, left, and right)in
Dense street day medium circle a sequences.

The MPE of LOAM using center LiDAR is 1.02%,
compared to 8.67% using the left LiDAR and 2.00% using
the right LiDAR. LOAM using the left LiDAR exhibits
significant drift since it initially captures minimal point cloud
information. Although the LOAM merely using tilt-mounted
LiDAR produces less accurate results compared to the center
LiDAR, multi-LiDAR fusion can integrate complementary
information, thereby improving localization accuracy and
constructing more precise point cloud maps. Meanwhile,
tunnel scenes present challenges for LiDAR SLAM. We
capture three consecutive frames of LiDAR point clouds
at two-second intervals in Fig.9. It is evident that these
LiDAR point clouds exhibit high similarity in the tunnel
environment, potentially resulting in degradation phenomena
and inaccurate state estimation.

Fig. 8. Point clouds of dense street with high-rising buildings
captured from three LiDARs, including two with angled
installations.

Fig. 9. LiDAR point clouds are sequentially captured in
tunnel scenes. The repetitive patterns lead to the degradation
challenges for localization.

VI. ISSUES
A. LiDAR-Camera Interference

Due to space limitations, we positioned LiDAR closer to
the event cameras. As a consequence, the infrared wave-
lengths emitted by LiDAR directly impinge on the photore-
ceptor of event cameras, resulting in continuous disturbances
and flickering in the captured images and event streams. To
address this issue, we implement infrared filters on event
cameras to counteract the effect. However, this intervention
led to a compromise, resulting in a degradation of the quality
of the recorded event data.

B. Event Artifacts

During the night or low illumination scenarios, we ob-
served that when event cameras were directly toward a
glowing light source, such as street lights or store lighting,
event streams would exhibit persistent flickering and produce
artifacts around the light source. This could potentially lead
to a distorted view of the observed object. We postulate
this phenomenon is related to the inherent principle of event
cameras, and presently, there is no known solution to address
this issue.

VII. CONCLUSIONS
In this paper, we propose an event-centric autonomous

driving dataset generated with multiple sensors across vari-
ous scenarios for developing SLAM algorithms. All sensors
undergo meticulous calibration and are temporally synchro-
nized at the hardware level. We employ the GNSS-RTK/INS
navigation system, which provides centimeter-level accuracy,
to acquire precise ground-truth of the vehicle. Furthermore,
we conduct the evaluation of various state-of-the-art vi-
sual and LiDAR SLAM algorithms while identifying their
constraints. We hope this dataset could contribute to the
development of visual and LiDAR SLAM. In future work,
we intend to expand the dataset to encompass additional
tasks, including semantics, optical flow, depth estimation,
etc.

REFERENCES

[1] X. Liu, W. Wen, and L.-T. Hsu, “Glio: Tightly-coupled gnss/lidar/imu
integration for continuous and drift-free state estimation of intelligent
vehicles in urban areas,” IEEE Transactions on Intelligent Vehicles,
2023.

[2] J. Huang, S. Zhao, T. Zhang, and L. Zhang, “Mc-veo: A visual-
event odometry with accurate 6-dof motion compensation,” IEEE
Transactions on Intelligent Vehicles, 2023.

[3] P. Yan, W. Wen, and L.-T. Hsu, “Integration of vehicle dynamic model
and system identification model for extending the navigation service
under sensor failures,” IEEE Transactions on Intelligent Vehicles,
2023.

[4] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis, et al., “Event-
based vision: A survey,” IEEE transactions on pattern analysis and
machine intelligence, vol. 44, no. 1, pp. 154–180, 2020.

[5] W. Guan, P. Chen, Y. Xie, and P. Lu, “Pl-evio: Robust monocular
event-based visual inertial odometry with point and line features,”
IEEE Transactions on Automation Science and Engineering, 2023.
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